The post-baccalaureate certificate in Geographic Information Systems applies critical GIS toward improving the lives of people, society, and the environment. Students will gain an understanding of essential geographic principles and concepts needed to solve problems in nearly any industry or academic discipline. Completing the certificate instills a foundation of spatial knowledge and technical skills for careers that employ spatial computing.
Required Core Courses (18 credits):
(Some may be substituted via transfer credits or alternative UMBC courses )
GES 666: Just Maps – Critical & Ethical Aspects of Mapping
This course employs a variety of mapping tools, in conjunction with R-Studio, to develop a student’s ability to critically approach cartographic production. A methodological approach will be taken that ranges from the selection and preparation of data to the choice of map representation in the final visualization product. From their own viewpoint, students will systematically analyze, interrogate, and reflect on how each stage of the cartographic process impacts the final product, as well as alternative viewpoints by their audiences. Assignments in this course will use urban-based data to make social science-related maps that are for a wide array of audiences. The course will also foster a student’s ability to assess other maps they encounter from a variety of sources. As part of the map production process, this course will illustrate the principles of graphical excellence so that students gain the ability to produce superior visual products. Students are introduced to the latest version of ArcGIS or ArcGIS Pro, as well as maintaining a GitHub page for portfolio development during their tenure.
GES 668: Building Spatial Datasets
In this course, students will learn how to find, understand, and work with spatial data for research and practice. This course leverages open-source tools, online educational resources, and real-world data from urban environments to help students build a methodological framework for academic and professional work with spatial data now and in the future. The course explores the process of building and maintaining data sets about local places and prepares students to navigate critical issues including open data licensing, location accuracy, data “cleaning”, and privacy considerations. Assignments and readings will introduce students to the range of practical uses for spatial data in planning, public policy, and advocacy around housing, health, transportation, the environment, and more. Students in the course will learn to work with common file formats (e.g. GeoJSON, GeoPackage) and web services (e.g. FeatureServer, APIs) and how to read, write, document, and share data using GIS applications (QGIS), web applications (Mapbox or ArcGIS Online), and programming languages (R or Python). This course does not require any prior experience with desktop GIS software or R programming. Assignments will require students to use R, RStudio, and QGIS during the course. Optional resources on working with spatial data using ArcGIS Online or Python will be provided where feasible. Students will be required to use GitHub in order to share completed assignments and develop their professional portfolios.
GES 673: Processing Geographic Data
This course has three primary objectives. The first objective is for students to learn the mechanics of several geo-processing tools so that they can (i) describe how the tools work, (ii) determine which is the most appropriate to be used in manipulating or creating data, and (iii) conceptualize the final state of the data once the tools is used. The second objective is to develop skills in selecting a set of geo-processing tools to develop a methodological process that (i) modifies data to create a standard data set for use by a broad range of analysts, and (ii) creates new data to pursue the answering of analytical questions. As such, students will derive a geo-processing method and combine several tools in a logical order to create, clean, and finalize a data set or analytical use. Several GIS operation theories will be presented so that students can identify how a GIS operates, stores, manipulates, and outputs geographic data. The third objective is to demonstrate how to document a geo-processing method for the purpose of (i) allowing others to replicate the method and (ii) provide transparency for data quality assessment.
GES 675: Web-GIS Development
This is a python development and data science course for students who pursue application development skills. It covers the python development language basics and python toolkits for big data analytics. The students will learn python data type, function, class, module, and packages. After mastering the basics, they will learn to use the Eclipse IDE tool to develop and debug complicated code to solve real-world problems. They also practice logic and code flow to be able to write efficient procedures. File I/O and database access are the two most common development tasks. Students will write code to read, copy, update and delete files. They will also write code to create tables, retrieve data and update records in a database. Once the students make the breakthrough in coding applications, they have the skills to tackle big data. This course focuses on data science. Data manipulation and visualization are thoroughly discussed. Python toolkit Numpy, Pandas, and Matplotlib are explained in-depth. Real-world data science examples are analyzed and python code to solve these problems is provided step by step. The solution leads the students to visualize how it relates to GIS. To prepare the students for advanced topics, the class introduces mpl_toolkits.basemap, a toolkit for GIS developers. After the class, the students shall be able to develop applications to solve complex big data problems using python and its toolkits.
GES 678: GIS Project Leadership & Management
This graduate-level course focuses on the study and application of structured analysis and design methods throughout the GIS life cycle. The course stresses standard approaches for gathering requirements, modeling, analyzing, and designing geographic information systems. The course employs the case method of instruction.
GES 774: Statistics for Geographers
The objective of this class is for students to learn how to analyze geographic data using several spatial statistical techniques, grounded in geography principles. Students are given a foundation in basic spatial statistics techniques, including an understanding of how the techniques work in conjunction with the geographic concepts that underpin each. The emphasis in this course is on interpreting and describing analysis results, and less on the statistical mechanics. Students will become familiar with the most common tools used for spatial statistics and gain a detailed understanding of how each technique works. Specifically, students will use several spatial tools in the ArcGIS 10.6 Spatial Statistics Toolbox, CrimeStat 4.0, and Open GeoDa 1.14.
We’re here to help! Stay connected with us.
Featured Event
Thursday, August 1
The application deadline for most Professional Programs for the fall semester is August 1.
See our full event listing for more opportunities to connect with us!
Looking for more info?