Master of Science in Engineering Management

Our Engineering Management master’s program teaches you the skills you need to move up the management track in an engineering or technology company. This graduate program emphasizes the essential leadership, business, and management skills required to effectively manage and lead people and complex projects in a technical company.  It is ideal for someone who is entering their first leadership role or aspires to move into management. Although not required for participating in this program, it is expected that students are, or intend to be, employed in a technology-oriented enterprise or government organization.

An applied degree, the Engineering Management program teaches real-world, industry-specific skills that you can immediately apply to your everyday work. Many courses are offered in an online or hybrid format to maximize convenience for the working professional. An optional capstone course where students carry out individual research in a management topic of interest is recommended as the culminating experience in the program.

Learning Outcomes

In the six core engineering management courses, students will learn cutting-edge skills such as how to effectively manage a project’s cost, schedule, technical performance, and risk, use basic management, leadership, communication and interpersonal skills to deal with others effectively, effectively function on and lead multidisciplinary teams, apply the elements of leadership within an organization, analyze and use company financial information to make effective decisions, identify and manage enterprise risk, and effectively oversee the management of engineering projects.

M.S. Engineering Management Program Requirements:

Students must complete 10 courses (30 credits) as follows:

  • Management courses (6 courses)
    • 5 required core courses (15 credits)
    • 1 elective management courses (3 credits)
  • Engineering or Information Technology track courses (4 courses)
  • Download the Academic Planning Form as unofficial guidance in planning your MS program.

Required Core Courses (15 credits)

ENMG 650: Project Management Fundamentals

Students learn the fundamentals of managing projects in a systematic way. These fundamentals can be applied within any industry and work environment and will serve as the foundation for more specialized project management study. Principles and techniques are further reinforced through practical case studies and team projects in which students simulate project management processes and techniques.

Or

ENMG 668: Project and Systems Engineering Management

This course will cover fundamental project control and systems engineering management concepts, including how to plan, set up cost accounts, bid, staff and execute a project from a project control perspective. It provides an understanding of the critical relations and interconnections between project management and systems engineering management. It is designed to address how systems engineering management supports traditional program management activities to break down complex programs into manageable and assignable tasks.

Note: Students must choose between either ENMG 650 or ENMG 668 as a core course, they cannot use both.

ENMG 652: Management Leadership and Communications

Students learn effective management and communication skills through case study-analysis, reading, class discussion and role-playing. The course covers topics such as effective listening, setting expectations, delegation, coaching, performance, evaluations, conflict management, and negotiation with senior management and managing with integrity.

ENMG 656: Engineering Law and Ethics

This course provides a comprehensive overview of important legal principles affecting engineers, engineering sciences and corporate management, with a focus on the intersection of these legal principles with business ethics. The student learns how to think through and process legal problems consistent with ethical norms, and how to analyze business risks in light of operative legal constructs, taking into consideration ethical issues, to arrive at a range of correct business decisions. Throughout the course, the student will learn substantive legal principles. Students will engage in weekly discussion board postings, completing quizzes and three individual papers.

ENMG 658: Financial Management

This course focuses on analysis and interpretation of financial statements with an emphasis on the measurement of results of operations and financial position of business organizations. The course covers the fundamentals of reading and analyzing financial statements and reports and applying to a business or work setting. The course will cover budgeting, profit planning, return on investment, risk and return, strategy and other financial information used in business decision-making. Students will discuss various types of contracts based on cost structure and prepare budgets as used in grant funding proposals.

ENMG 693: Management Project

The Management Project course is the capstone for management programs. This course is normally taken in the final semester of their management program. Students will carry out individual research in a management topic of interest to the student and approved by the faculty member. The students work shall demonstrate mastery of the management and leadership skills obtained in the program. The result of the research is typically in the form of a case study of management problem of interest. This course meets in person approximately five times during the semester.

Prerequisites: ENMG 652, ENMG 656, ENMG 658, and either ENMG 650 or ENMG 668; a grade of ‘C’ or better is required in each.

Elective Management Course (3 credits)

Any other general management or cybersecurity course from the course listing to provide breadth to your managerial knowledge.

We’re here to help! Stay connected with us.









HIDDEN















Pathways

In consultation with their faculty advisor, students will choose four courses of elective credit. There are suggested groupings of electives or pathways, which allow students to focus on a particular area of engineering management.  Pathways include:

Cybersecurity

This pathway prepares you for leadership roles in the organizations that are protecting our critical resources and infrastructures.  Successful completion of these courses will qualify the student to earn a Graduate Certificate in Cybersecurity Strategy and Policy.

CYBR 620: Intro to Cybersecurity

This course introduces students to the interdisciplinary field of cybersecurity by discussing the evolution of information security into cybersecurity, cybersecurity theory, and the relationship of cybersecurity to nations, businesses, society, and people. Students will be exposed to multiple cybersecurity technologies, processes, and procedures, learn how to analyze the threats, vulnerabilities and risks present in these environments, and develop appropriate strategies to mitigate potential cybersecurity problems.

Prospective students who have earned the CISSP designation within the past 5 years may, if admitted, substitute another course for CYBR 620 “Introduction to Cybersecurity” in their first semester of the CYBR MS program. Students should provide evidence of successful completion of the CISSP exam within that timeframe (such as a transcript or official documentation from the certifying authority) to UMBC as part of their application.

Prerequisite: Enrollment in the CYBR program or in at least the second semester of graduate study. Other students may be admitted with instructor permission.

CYBR 621: Cyber Warfare

This course addresses some of the unique and emerging policy, doctrine, strategy, and operational requirements of conducting cyber warfare at the nation-state level. It provides students with a unified battlespace perspective and enhances their ability to manage and develop operational systems and concepts in a manner that results in the integrated, controlled, and effective use of cyber assets in warfare.

Prerequisite: Enrollment in the CYBR program or in at least the second semester of graduate study. Other students may be admitted with instructor permission.

CYBR 622: Global Cyber Capabilities and Trends

This course focuses on four general areas of cyber capabilities and trends in the global community: the theory and practice of cybersecurity and cyberwar; cyber capabilities of nation-states as well as non-state actors; trends in cyber-related strategies and policies; and cyber-related challenges facing the U.S. government. The course concludes with a national cybersecurity policy exercise that helps demonstrate the challenges and complexities of the dynamic and global cybersecurity environment.

Prerequisite: Enrollment in the CYBR program or in at least the second semester of graduate study. Other students may be admitted with instructor permission.

CYBR 623: Cybersecurity Law & Policy

Students will be exposed to the national and international policy and legal considerations related to cybersecurity and cyberspace such as privacy, intellectual property, cybercrime, homeland security (i.e., critical infrastructure protection) and cyberwarfare, and the organizations involved in the formulation of such laws and policies. Broader technology issues also are discussed to demonstrate the interdisciplinary influences and concerns that must be addressed in developing or implementing effective national cybersecurity laws and policies.

Prerequisite: Enrollment in the CYBR program or in at least the second semester of graduate study. Other students may be admitted with instructor permission.

Data Science

Every organization is growing its data and analytics capabilities. This pathway prepares you to manage and lead within your organization’s data science team. Successful completion of these courses will qualify the student to earn a Graduate Certificate in Data Science.

DATA 601: Introduction to Data Science

The goal of this class is to give students an introduction to and hands on experience with all phases of the data science process using real data and modern tools. Topics that will be covered include data formats, loading, and cleaning; data storage in relational and non-relational stores; data governance, data analysis using supervised and unsupervised learning using R and similar tools, and sound evaluation methods; data visualization; and scaling up with cluster computing, MapReduce, Hadoop, and Spark.

Prerequisite: Enrollment in the Data Science program. Other students may be admitted with instructor permission.

DATA 602: Introduction to Data Analysis and Machine Learning

This course provides a broad introduction to the practical side of machine-learning and data analysis. This course examines the end-to-end processing pipeline for extracting and identifying useful features that best represent data, a few of the most important machine algorithms, and evaluating their performance for modeling data. Topics covered include decision trees, logistic regression, linear discriminant analysis, linear and non-linear regression, basic functions, support vector machines, neural networks, Bayesian networks, bias/variance theory, ensemble methods, clustering, evaluation methodologies, and experiment design.

Prerequisite: DATA 601: Introduction to Data Science and enrollment in the Data Science program. Non-Data Science students may be permitted with instructor permission.

DATA 603: Platforms for Big Data Processing

The goal of this course is to introduce methods, technologies, and computing platforms for performing data analysis at scale. Topics include the theory and techniques for data acquisition, cleansing, aggregation, management of large heterogeneous data collections, processing, information and knowledge extraction. Students are introduced to map-reduce, streaming, and external memory algorithms and their implementations using Hadoop and its eco-system (HBase, Hive, Pig and Spark). Students will gain practical experience in analyzing large existing databases.

Prerequisite: Enrollment in the Data Science program and DATA 601. Other students may be admitted with program director’s permission.

DATA 604: Data Management

This course introduces students to the data management, storage and manipulation tools common in data science. Students will get an overview of relational database management systems and various NoSQL database technologies, and apply them to real scenarios. Topics include: ER and relational data models, storage and concurrency preliminaries, relational databases and SQL queries, NoSQL databases, and Data Governance.

Prerequisite: Enrollment in the Data Science program. Other students may be admitted with instructor permission. Corequisite: DATA 601: Introduction to Data Science

International Management

As companies become more global, the ability to manage teams and organizations spread across multiple cities and countries presents unique challenges.  This pathway will provide students with a focused set of courses that address these challenges and provide management skills tailored for this environment.

ENMG 654: Leading Teams and Organizations

Students analyze leadership case studies across a wide range of industries and environments to identify effective leadership principles that may be applied in their own organizations. Students learn how to influence people throughout their organization, lead effective teams, create an inclusive workplace, use the Six Sigma process, implement and manage change and develop a leadership style.

Prerequisite: ENMG 652: Management, Leadership and Communication

ENMG 659: Strategic Management

This course is intended to integrate the learning from the previous management courses and to focus it on the perspective and problems of the Chief Executive Officer and other organizational strategic managers. The theme of the course is that any organization improves its chances of sustained success when its managers formulate an action-oriented strategic business plan based on the strategic management process. Case studies are included to illustrate the concepts and their applications.

Prerequisite: Minimum of three engineering management courses

ENMG 661: Leading Global Virtual Teams

This course is designed to help the student apply managerial concepts and skills to managing and leading virtual and/or global work teams. Geographically dispersed work teams have great challenges: tone is difficult to convey electronically, time zones limit audio communication opportunities, work oversight requires more reposting, and team building is exceedingly difficult using technological – rather than in-person – tools. Language and culture differences in multinational teams compound these challenges. Students will learn to empower others, build credibility, communicate appropriately and adapt quickly across cultures and technologies.

ENMG 680: International Project Management

This course explores the best management practices of international projects, emphasizing the importance of leadership skills and virtual teamwork to successfully navigate through managing an international project. International projects differ from domestic projects by their complexity of culture, increased communications and collaboration requirements, local customs and practices, differing languages and currencies, processes, and the type of resources that may be available. The course describes how to conduct project planning in each of the life cycle acquisition process phases and then to execute the plan through recommended international organizational structures.

Management Science

Managing in an engineering organization requires a combination of “soft” skills (leadership, communication, etc.) and “hard” skills to ensure projects are completed on time and budget.  The management science pathway focuses on “hard” management skills that are more quantitative and critical to organizational operations.

ENMG 659: Strategic Management

This course is intended to integrate the learning from the previous management courses and to focus it on the perspective and problems of the Chief Executive Officer and other organizational strategic managers. The theme of the course is that any organization improves its chances of sustained success when its managers formulate an action-oriented strategic business plan based on the strategic management process. Case studies are included to illustrate the concepts and their applications.

Prerequisite: Minimum of three engineering management courses

ENMG 664: Quality Engineering & Management

This first aspect of this course is focused on an overview of basic quality principles and applications from engineering and engineering management perspectives. Students will examine philosophies of key figures like Deming, Juran, and Crosby and discover the value of a variety of quality management approaches (Baldridge Performance Excellence, ISO, and Six Sigma/Lean Six Sigma, and others). The second aspect of the course will focus on discussion, analysis, and application of some of quantitative tools including: Pareto charts, measurement systems, design of experiments, statistical process control, and six-sigma methods. Students will apply these tools and methods to solve engineering and management problems. Reading assignments, homework, exams, and the final project/paper will emphasize the application of quality approaches, techniques, and problem solving. Note: Students in undergraduate engineering programs or graduate degree programs other than Systems Engineering or Engineering Management need permission from their academic advisor in order to apply this course to their respective degree programs. This course can be counted as either a management course or an engineering course for the M.S. in Engineering Management.

ENMG 681: Acquisition and Execution of Technical Contracts

Acquisition and Execution of Technical Contracts is designed for professionals in the public and private sectors. The course provides coverage of global government and commercial sector acquisition practices, industry standards for business acquisition, current issues in business, contracting, legal and finance, and policy issues associated with business acquisition and contract execution.

ENMG 692: Principles of Organization Learning

Corporations are applying radically new management techniques to remain competitive. Today, information forms the basis for competitive advantage as companies are competing as much on their ability to create and manage new information, as they do on marketing and selling their physical products and associated services. This course studies how organizations create and use knowledge to support their operations and strategic planning. A “knowledge-creating” company is said to be one that consistently creates new knowledge, disseminates it widely throughout the organization, and quickly embodies it in new technologies and products, and whose sole business is continuous innovation. Actions are investigated which corporate executives and managers can take to improve their management, translation, and utilization of knowledge, to increase their organization’s absorptive capacities and ability to learn quickly, to posture themselves for innovative responses to changing market conditions, to handle disruptive technology cycles, to implement the effective use of data analytics, and to develop sustainable business models and improve organizational performance.

Businesses collected more customer information in 2010, than in all prior years combined. The amount of corporate data being collected is said to be doubling every 6 months. The intellectual property of these companies will take a second seat and their ability to compete will depend on their current absorptive capacity, and their capacity to learn as an organization faster than their competitors. This course prepares students for future market environments where innovative businesses will compete based on their ability to process information and learn, and learn quickly. This course has selected the most relevant research papers in the fields of knowledge management, organizational learning, and strategic planning. After this course, you will be familiar with the most significant research dedicated to optimizing business and project processes that has been released in the last decade. Each research paper has been summarized in 2 to 3 page reports to help students manage the significant amounts of information and to track the key points being made in each paper. The future may already be here, so why not be prepared for it!

SYST 672: Decision and Risk Analysis

This course provides an overview of decision and risk analysis techniques. It focuses on how to make rational decisions in the presence of uncertainty and conflicting objectives. This course covers modeling uncertainty; rational decision-making principles; representing decision problems with value trees, decision trees, and influence diagrams; solving value hierarchies, decision trees, and influence diagrams; defining and calculating the value of information; incorporating risk attitudes into the analysis; and conducting sensitivity analysis. Students are expected to have an elementary understanding of probability theory.

*SYST 672 may be substituted for ENMG 659 or 692

Project Management

This pathway will help you develop the critical analysis capabilities necessary to successfully complete projects and lead high-performing technical, virtual, and international teams. Upon graduation, you will demonstrate the ability to apply sound project management practices as outlined by the Project Management Institute (PMI). Successful completion of these courses will qualify the student for the graduate certificate in Project Management.

ENMG 650: Project Management Fundamentals

Students learn the fundamentals of managing projects in a systematic way. These fundamentals can be applied within any industry and work environment and will serve as the foundation for more specialized project management study. Principles and techniques are further reinforced through practical case studies and team projects in which students simulate project management processes and techniques.

ENMG 663: Advanced Project Management Applications

This advanced course in project management builds on the beginner level project management courses to expand the hands-on applications, with a focus on critical evaluation of project performance and ultimately creating an environment for maximizing one’s own project management performance. With a strong emphasis on the importance of learning through application, the course will bridge academia with the professional business environment to provide opportunities for students to interact with industry professionals as the students execute their course work. Students will also confront the real challenges facing project managers associated with the growing global and virtual workforce through the use of online learning tools and methods of collaboration. At the successful completion of the course, students will have the requisite skills and experiences necessary to function effectively, and artfully, as skilled project managers.

ENMG 652: Management Leadership and Communications

Students learn effective management and communication skills through case study-analysis, reading, class discussion and role-playing. The course covers topics such as effective listening, setting expectations, delegation, coaching, performance, evaluations, conflict management, and negotiation with senior management and managing with integrity.

You may choose any of the following electives for your fourth course:

ENMG 615: Product Development

This course will address the methods and processes for developing new products, defining market opportunities, product planning, product design and manufacturing. Topics covered will include market research and collecting user requirements, translation of user needs into product specifications, prototyping/market testing to evaluate product concepts, product design, manufacturing planning, and product launch. This should be the first course a student takes in the certificate program.

Note: Prior to Fall 2024, this course was listed as ENME 615.

ENMG 661: Leading Global Virtual Teams

This course is designed to help the student apply managerial concepts and skills to managing and leading virtual and/or global work teams. Geographically dispersed work teams have great challenges: tone is difficult to convey electronically, time zones limit audio communication opportunities, work oversight requires more reposting, and team building is exceedingly difficult using technological – rather than in-person – tools. Language and culture differences in multinational teams compound these challenges. Students will learn to empower others, build credibility, communicate appropriately and adapt quickly across cultures and technologies.

ENMG 664: Quality Engineering & Management

This first aspect of this course is focused on an overview of basic quality principles and applications from engineering and engineering management perspectives. Students will examine philosophies of key figures like Deming, Juran, and Crosby and discover the value of a variety of quality management approaches (Baldridge Performance Excellence, ISO, and Six Sigma/Lean Six Sigma, and others). The second aspect of the course will focus on discussion, analysis, and application of some of quantitative tools including: Pareto charts, measurement systems, design of experiments, statistical process control, and six-sigma methods. Students will apply these tools and methods to solve engineering and management problems. Reading assignments, homework, exams, and the final project/paper will emphasize the application of quality approaches, techniques, and problem solving. Note: Students in undergraduate engineering programs or graduate degree programs other than Systems Engineering or Engineering Management need permission from their academic advisor in order to apply this course to their respective degree programs. This course can be counted as either a management course or an engineering course for the M.S. in Engineering Management.

ENMG 667: DE/I Mindset in Technical Project Management

Understanding and grappling with considerations of diversity, equity, and inclusion (DE/I) within technical project management is growing in both relevance and importance. This course addresses this imperative through equipping the student with the knowledge, skills, and attitudes to develop a DE/I mindset in the management of technology-based projects. Centered on exploring how to incorporate and advance DE/I within the five (5) major project management process groups, this course provides a balanced overview of both the science and art of inclusive technical project management. A particular focus of this course is on developing the professional skills, growth mindset, and systems perspective that underpin the DE/I mindset in technical project management. This course combines lecture presentations, group project-based assignments, group discussions, individual case study, and exams.

ENMG 672: Decision and Risk Analysis

This course provides an overview of decision and risk analysis techniques. It focuses on how to make rational decisions in the presence of uncertainty and conflicting objectives. This course covers modeling uncertainty; rational decision-making principles; representing decision problems with value trees, decision trees, and influence diagrams; solving value hierarchies, decision trees, and influence diagrams; defining and calculating the value of information; incorporating risk attitudes into the analysis; and conducting sensitivity analysis. Students are expected to have an elementary understanding of probability theory.

ENMG 680: International Project Management

This course explores the best management practices of international projects, emphasizing the importance of leadership skills and virtual teamwork to successfully navigate through managing an international project. International projects differ from domestic projects by their complexity of culture, increased communications and collaboration requirements, local customs and practices, differing languages and currencies, processes, and the type of resources that may be available. The course describes how to conduct project planning in each of the life cycle acquisition process phases and then to execute the plan through recommended international organizational structures.

ENMG 681: Acquisition and Execution of Technical Contracts

Acquisition and Execution of Technical Contracts is designed for professionals in the public and private sectors. The course provides coverage of global government and commercial sector acquisition practices, industry standards for business acquisition, current issues in business, contracting, legal and finance, and policy issues associated with business acquisition and contract execution.

Systems Engineering

Systems engineering principles may be applied across all industries and provide a structure for the development of complex systems.  Successful completion of this pathway will qualify the student to receive a Graduate Certificate in Systems Engineering.

SYST 660: Systems Engineering Principles

The Systems Engineering Principles course provides an introduction to the discipline of Systems Engineering and its specific process framework required to create man-made systems. The course describes how the SE process is implemented in standard life cycle models and through various standard organizational structures. Specifically, this course provides an overview of the systems engineering processes outlined in the International Standard for Systems and Software Engineering (ISO/IEC 15288:2008), the International Council on Systems Engineering (INCOSE) Handbook, and the INCOSE Systems Engineering Body of Knowledge. This course will emphasize that Systems Engineering Technical Processes operate within the envelope of the Project as dictated by Contracts as set forth by an Organization. As a part of this course, students will select, research, and report on systems engineering process areas of particular importance to them. Class exercises are designed to provide the opportunity to practice the concepts learned in class. 

The coursework from this class has been recognized by INCOSE as having the same content as the INCOSE knowledge exam. Therefore, a student who passes this class (required minimum is 80%) is eligible to bypass the INCOSE knowledge exam on their path to becoming an INCOSE Associate Systems Engineering Professional (ASEP) or Certified Systems Engineering Professional (CSEP).  

SYST 661: System Architecture and Design

The System Architecture and Design course focuses on the role of the systems architect in the system development life cycle. In the operational analysis phase, the emphasis is on understanding the context of the system within the larger customer problem area, and the identification of requirements that influence system partitioning. In the functional analysis phase, the emphasis is on the dependencies between processing steps. In the architectural design phase, the emphasis is on partitioning the system into generic components, and ultimately instantiating them into physical components. A precision landing system is used throughout the course as a common case study. Within the classroom sessions, a search and rescue system is used. Three presentations by each group are given to simulate: (1) RFI review, (2) SRR, and (3) SDR. These reviews progressively reveal each group’s proposed solution to the precision landing system for a mythical country with unique complicating characteristics.

Prerequisite: SYST 660. SYST 660 may be taken concurrently with instructor permission.

SYST 662: Modeling, Simulation, and Analysis

The Modeling, Simulation, and Analysis (MS&A) course covers the use of modeling, simulation, and analysis in the development and test of systems. The course covers leading MS&A activities, architecting simulations, and making decisions based on statistical analysis of the simulation results. The techniques discussed in class are motivated through the use of examples. Typical modeling problems discussed include performance, cost, reliability, and maintainability modeling. Students will develop simple models and simulations using MATLAB and complete several course projects.

Prerequisites: SYST 660, SYST 669. The SYST 669 class requirement may be waived by passing the Mathematics and MATLAB Fundamentals Proficiency Exam. See the instructor for details.

SYST 663: System Implementation, Integration, and Test

The System Implementation, Integration, and Test course is a follow-on to SYST 661. The course covers the translation of design specifications into product elements, the integration of these elements into a system, and the verification that the resulting system performs as intended in its operational environment. The course follows the product development life cycle beyond system architecture and design. The system is decomposed into component level elements suitable for software coding and hardware fabrication. These elements are then individually tested and gradually integrated together as the various modules and sub-systems are subjected to unit test, verification and validation. Eventually the full system goes through Operational Test and Evaluation, and finally makes it into production and operation. This course covers the System Engineer role, activities and processes that are needed during this phase of the product development cycle. Areas of study will include technical planning, requirement & interface management, standards, technical performance measures, technical evaluation, technical readiness, implementation, integration, verification, validation, production, transition to operation and complexity.

Prerequisites: SYST 660 and SYST 661 or consent of instructor.

Technology Development

The development and commercialization of new technologies is at the heart of leading edge and start-up organizations.  Managing in such an environment has particular challenges and requires a unique set of skills. This pathway includes courses from multiple disciplines to provide a solid foundation for the student interested in bring new technologies to market.

ENMG 659: Strategic Management

This course is intended to integrate the learning from the previous management courses and to focus it on the perspective and problems of the Chief Executive Officer and other organizational strategic managers. The theme of the course is that any organization improves its chances of sustained success when its managers formulate an action-oriented strategic business plan based on the strategic management process. Case studies are included to illustrate the concepts and their applications.

Prerequisite: Minimum of three engineering management courses

ENTR 607: Technology Commercialization

This course is designed to give the participants an introduction to the process for starting a technology-based company, including 1) identifying candidate technologies with commercial potential; 2) forming a company to develop a product or service based on that technology, and 3) taking the initial steps in taking the product or service to market. An experiential model for learning will be employed for instruction in which the participants will form teams, select a technology, identify products/services derived from that technology, and develop a plan for commercialization of the product/service. 

Prerequisite: Enrollment in the program or at least the second semester of graduate study.

ENMG 615: Product Development

This course will address the methods and processes for developing new products, defining market opportunities, product planning, product design and manufacturing. Topics covered will include market research and collecting user requirements, translation of user needs into product specifications, prototyping/market testing to evaluate product concepts, product design, manufacturing planning, and product launch. This should be the first course a student takes in the certificate program.

Note: Prior to Fall 2024, this course was listed as ENME 615.

SYST 672: Decision and Risk Analysis

This course provides an overview of decision and risk analysis techniques. It focuses on how to make rational decisions in the presence of uncertainty and conflicting objectives. This course covers modeling uncertainty; rational decision-making principles; representing decision problems with value trees, decision trees, and influence diagrams; solving value hierarchies, decision trees, and influence diagrams; defining and calculating the value of information; incorporating risk attitudes into the analysis; and conducting sensitivity analysis. Students are expected to have an elementary understanding of probability theory.

Additional groupings of electives or pathways will be selected in consultation with a faculty advisor.