UMBC’s Master of Professional Studies (M.P.S.) in Data Science program prepares students from a wide range of disciplinary backgrounds for careers in data science. In the core courses, students will get a fundamental understanding of data science through classes that highlight machine learning, data analysis and data management. The core courses will also introduce students to ethical and legal implications surrounding data science.
Beyond the core courses, students will take three courses in domain specific pathways developed in collaboration with academic departments across the university. Through these pathways, students will be able to utilize the skills and techniques they learned in the core courses within their own field or area of expertise.
Required Core Courses
DATA 601: Introduction to Data Science
The goal of this class is to give students an introduction to and hands on experience with all phases of the data science process using real data and modern tools. Topics that will be covered include data formats, loading, and cleaning; data storage in relational and non-relational stores; data governance, data analysis using supervised and unsupervised learning using R and similar tools, and sound evaluation methods; data visualization; and scaling up with cluster computing, MapReduce, Hadoop, and Spark.
Prerequisite: Enrollment in the Data Science program. Other students may be admitted with instructor permission.
DATA 602: Introduction to Data Analysis and Machine Learning
This course provides a broad introduction to the practical side of machine-learning and data analysis. This course examines the end-to-end processing pipeline for extracting and identifying useful features that best represent data, a few of the most important machine algorithms, and evaluating their performance for modeling data. Topics covered include decision trees, logistic regression, linear discriminant analysis, linear and non-linear regression, basic functions, support vector machines, neural networks, Bayesian networks, bias/variance theory, ensemble methods, clustering, evaluation methodologies, and experiment design.
Prerequisite: DATA 601: Introduction to Data Science and enrollment in the Data Science program. Non-Data Science students may be permitted with instructor permission.
DATA 603: Platforms for Big Data Processing
The goal of this course is to introduce methods, technologies, and computing platforms for performing data analysis at scale. Topics include the theory and techniques for data acquisition, cleansing, aggregation, management of large heterogeneous data collections, processing, information and knowledge extraction. Students are introduced to map-reduce, streaming, and external memory algorithms and their implementations using Hadoop and its eco-system (HBase, Hive, Pig and Spark). Students will gain practical experience in analyzing large existing databases.
Prerequisite: Enrollment in the Data Science program and DATA 601. Other students may be admitted with program director’s permission.
DATA 604: Data Management
This course introduces students to the data management, storage and manipulation tools common in data science. Students will get an overview of relational database management systems and various NoSQL database technologies, and apply them to real scenarios. Topics include: ER and relational data models, storage and concurrency preliminaries, relational databases and SQL queries, NoSQL databases, and Data Governance.
Prerequisite: Enrollment in the Data Science program. Other students may be admitted with instructor permission. Corequisite: DATA 601: Introduction to Data Science
DATA 605: Ethical and Legal Issues in Data Science
This course provides a comprehensive overview of important legal and ethical issues pertaining to the full life cycle of data science. The student learns how to think through the ethics of making decisions and inferences based on data and how important cases and laws have shaped the data science field. Students will use real and hypothetical case studies across various domains to explore these issues.
Prerequisite: Enrollment in the Data Science program. Other students may be admitted with instructor permission. Corequisite: DATA 601: Introduction to Data Science
DATA 606: Capstone in Data Science
This is a semi-independent course that provides the advanced graduate student in the Data Science program the opportunity to apply the knowledge, skills and tools they’ve learned to a real-world data science project. Students will work with a real data set and go through the entire process of solving a real-world data science project. The project may be conducted with industry, government and academic partners, who can provide the data set, with guidance and feedback from the instructor.
Prerequisite: Completion of all other core courses.
DATA 607: Leadership in Data Science
In the rapidly evolving field of data science, technical expertise alone is not sufficient for success. Effective leadership is essential to navigate the complexities of data-driven decision-making and drive impactful outcomes. The course is designed as a practical stage-by-stage field guide for our students to their careers in data science. It provides valuable insights and strategies for individuals at different career stages, from aspiring data science tech leads to seasoned data science executives. Through a comprehensive examination of several case studies, students will develop a deep understanding of the leadership skills, capabilities, and virtues necessary for success in the field of data science.
Prior to Spring 2024 ENMG 652 was accepted for this requirement.
Pathway Programs & Courses
The pathways will allow students who work in a particular domain to take classes specific to their industry. Each pathway will consist of three courses. See pathways at UMBC Main Campus, Shady Grove, and those that are available at both campuses.
UMBC Main Campus
Advanced Computing and Analytics
In collaboration with the Department of Computer Science and Electrical Engineering
- CMSC 615 Introduction to Systems Engineering
- CMSC 625 Modeling and Simulation of Computer Systems
- CMSC 627 Wearable Computing
- CMSC 628 Mobile Computing
- CMSC 636 Data Visualization
- CMSC 653 Information and Coding Theory
- CMSC 655 Numerical Computations
- CMSC 661 Principles of Database Systems
- CMSC 668 Service-Oriented Computing
- CMSC 671 Principles of Artificial Intelligence
- CMSC 673 Introduction to Natural Language Processing
- CMSC 675 Introduction to Neural Networks
- CMSC 676 Information Retrieval
- CMSC 678 Machine Learning
- CMSC 691 Special Topics in Computer Science (Permission from Graduate Program Director)
- Any other relevant graduate-level course in Computer Science with permission from the Graduate Program Director.
Clinical Informatics (with UMB)
Students can transfer in coursework from the Clinical Informatics program at the University of Maryland, Baltimore to serve as a nine-credit Clinical Informatics pathway within the M.P.S. All courses are online/asynchronous.
- INFO 601: Foundations in Clinical and Health Informatics
- INFO 602: Clinical Information Systems
- INFO 604: Decision Support Systems in Healthcare
Learn more about the Clinical Informatics pathway with UMB.
Cybersecurity
In cooperation with the Cybersecurity M.S. program
- CYBR 620 Introduction to Cybersecurity
- CYBR 650: Managing Cybersecurity Operations
- CYBR 658: Risk Analysis and Compliance
Data Science Analysis
In collaboration with the Department of Information Systems:
- IS 661 – Biomedical Informatics Applications
- IS 706 – Interfaces For Info. Visualization & Retrieval
- IS 707 – Applications of Intelligent Technologies
- IS 721 – Semi-Structured Data Management
- IS 722 – Systems and Information Integration
- IS 728 – Online Communities
- IS 731 – Electronic Commerce
- IS 733 – Data Mining
- IS 777 – Data Analytics for Statistical Learning
- Other courses may also qualify. Please consult the Program Director.
Economics/Econometrics
In collaboration with the Department of Economics:
- PUBL 604 – Statistical Analysis
- ECON 601 – Microeconomic Analysis
- ECON 602 – Macroeconomic Analysis
- ECON 611 – Advanced Econometric Analysis I
- ECON 612 – Advanced Econometric Analysis II
- ECON 652 – Economics of Health
Click here to learn more about the economics/econometrics pathway.
Healthcare Analytics
In cooperation with the Health IT program
- HIT658: Health Informatics I
- HIT759: Health Informatics II
- HIT723: Public Health Informatics
- HIT674: Process and Quality Improvement within Health IT
- HIT751: Introduction to Healthcare Databases
Click here to read more about the healthcare analytics pathway.
Management Sciences
In collaboration with the College of Engineering and Information Technology, choose 3 of the following courses:
- ENMG 650: Project Management Fundamentals
- ENMG 654: Leading Teams and Organizations
- ENMG 658: Financial Management
- ENMG 659: Strategic Management
- ENMG 660: Systems Engineering Principles
- ENMG 661: Leading Global Virtual Teams
- ENMG 663: Advanced Project Management Applications
- ENMG 664: Quality Engineering & Management
- ENMG 668: Project and Systems Engineering Management
- ENMG 690: Innovation and Technology Entrepreneurship
- SYST 672: Decision and Risk Analysis
Click here to read more about the management sciences pathway.
Policy Analysis
In collaboration with the School of Public Policy
- ECON 600 Policy Consequences of Economic Analysis
- PUBL 601 Political and Social Context of the Policymaking Process
- PUBL 603 Theory and Practice of Policy Analysis
- PUBL 607 Statistical Applications in Evaluation Research
- PUBL 608 Applied Multivariate Regression Analysis
- PUBL 610 (special topics)
Project Management
In collaboration with the College of Engineering and Information Technology:
- ENMG 650: Project Management
- ENMG 661: Leading Virtual/Global Teams
- ENMG 663: Advanced Project Management Applications
Note: Students pursuing the Project Management pathway are eligible for a certificate in Project Management upon completion. Read more about the Project Management pathway here.
Shady Grove
Bioinformatics (FAES @ NIH)
Students can transfer in coursework from Foundation for Advanced Education in Science (FAES) at the National Institutes of Health (NIH) to serve as a nine-credit Bioinformatics pathway within the MPS. Within Bioinformatics, FAES offers three-credit courses, as well as one-credit and two-credit courses. The one and two credit courses will need to be combined to be considered as equivalents to three-credit graduate level courses offered at UMBC. See more at professional.umbc.edu/faes.
Clinical Informatics (with UMB)
Students can transfer in coursework from the Clinical Informatics program at the University of Maryland, Baltimore to serve as a nine-credit Clinical Informatics pathway within the M.P.S. All courses are online/asynchronous.
- INFO 601: Foundations in Clinical and Health Informatics
- INFO 602: Clinical Information Systems
- INFO 604: Decision Support Systems in Healthcare
Learn more about the Clinical Informatics pathway with UMB.
Cybersecurity
In cooperation with the Cybersecurity M.S. program
- CYBR 620 Introduction to Cybersecurity
- CYBR 650: Managing Cybersecurity Operations
- CYBR 658: Risk Analysis and Compliance
Spatial Analytics
In collaboration with the Department of Geography and Environmental Systems:
- GES 770: Special Topics in GIS
- GES 771: Advanced Spatial Data Management
- GES 773: GIS Modeling
- GES 774: Spatial Analysis
- GES 778: Visualization and Presentation
- GES 775: Advanced Application Development: Python Geospatial Development
Click here to read more about the spatial analytics pathway.
Programs at Both Campuses
Aging Studies
In collaboration with the UMBC Erickson School of Aging
Required:
- AGNG 600: Social and Economic Context of Aging
- AGNG 604: Policy Foundations of Aging Services
Students who chose the “Aging Studies” pathway will take AGNG 600, AGNG 604, and one of the other courses listed below:
- AGNG 620: An Overview of Dementia & Dementia Care Services
- AGNG 621: Policy Foundations in Dementia Care Services
- AGNG 624: Strategy, Marketing, and Service Delivery in Aging Services
- AGNG 632: Diversity in Management of Aging Services
Read more about the aging studies pathway.
Clinical Informatics (with UMB)
Students can transfer in coursework from the Clinical Informatics program at the University of Maryland, Baltimore to serve as a nine-credit Clinical Informatics pathway within the M.P.S. All courses are online/asynchronous.
- INFO 601: Foundations in Clinical and Health Informatics
- INFO 602: Clinical Information Systems
- INFO 604: Decision Support Systems in Healthcare
Learn more about the Clinical Informatics pathway with UMB.
Cybersecurity
In cooperation with the Cybersecurity M.S. program
- CYBR 620 Introduction to Cybersecurity
- CYBR 650: Managing Cybersecurity Operations
- CYBR 658: Risk Analysis and Compliance
Looking for more info?